Optimal control strategies with nonlinear optimization for an Electric Submersible Pump lifted oil field
نویسنده
چکیده
In an Electric Submersible Pump (ESP) lifted oil field, the ESP of each oil well should be operated inside its operating window. The total power consumed by the ESPs in the oil field should be minimized. The speed of the ESPs and the production choke valve opening should be optimally chosen for maximizing the total oil produced from the oil field. At the same time, the capacity of the separator should not be exceeded. In this paper, nonlinear steady state optimization based on Sequential Quadratic Programming (SQP) is developed. Two optimal control structures are proposed in this paper. In the first case, the optimal pump speed is controlled by a PI controller by varying the electrical excitation signal to the motors. The optimal fluid flow rate through each oil well is controlled by another PI controller by varying the production choke valve opening. The paper shows that the production choke valve for each oil well has to be always 100% open to maintain the optimal fluid flow rate. In the second case, the production choke valves are considered to be always 100% open as hard constraints. The optimal fluid flow rate through each oil well is controlled by a PI controller by varying the pump speed. It is shown that when the optimal fluid flow rate is tracked by the controller, the speed of each of the pumps is equal to the optimal pump speed calculated by the optimizer. This basically means that we can achieve the optimization objective with the same optimal results as in the first case by using only a single PI controller. The limitations of these two optimal control structures for very low values and for very high values of the separator capacity are discussed. For the feasible range of separator capacities, the optimal locus of the fluid flow rate and the pump speed are shown in this paper.
منابع مشابه
The parametric study of an electrical submersible pump rotary gas separator under two-phase flow condition
The performance of the electric submersible pump (ESP) significantly affected by Gas Void Fraction (GVF). Thus, using of a Rotary Gas Separator (RGS) is a suitable solution for this issue. The performance of the RGS is function of different parameters such as geometry of impeller, rotating speed, boundary conditions, media viscosity and GVF. In this study, the influences of GVF, viscosity, and ...
متن کاملOptimization of lift gas allocation in a gas lifted oil field as non-linear optimization problem
Proper allocation and distribution of lift gas is necessary for maximizing total oil production from a eld with gas lifted oil wells. When the supply of the lift gas is limited, the total available gas should be optimally distributed among the oil wells of the eld such that the total production of oil from the eld is maximized. This paper describes a non-linear optimization problem with constra...
متن کاملThe parametric study of an electrical submersible pump rotary gas separator under two-phase flow condition
The performance of the electric submersible pump (ESP) significantly affected by Gas Void Fraction (GVF). Thus, using of a Rotary Gas Separator (RGS) is a suitable solution for this issue. The performance of the RGS is function of different parameters such as geometry of impeller, rotating speed, boundary conditions, media viscosity and GVF. In this study, the influences of GVF, viscosity, ...
متن کاملEstimation of Flow Rate and Viscosity in a Well with an Electric Submersible Pump Using Moving Horizon Estimation
A Moving Horizon Estimator (MHE) is designed for a petroleum production well with an Electric Submersible Pump (ESP) installed for artificial lift. The focus is on estimating the flow rate from the well, the viscosity of the produced fluid, and the productivity index of the well. The software package ACADO is used to implement a Moving Horizon Estimator using a third-order nonlinear model. Simu...
متن کاملMulti-objective Optimization of Hybrid Electric Vehicle Equipped with Power-split Continuously Variable Transmission
This paper aims to find the efficient state of hybrid electric vehicle (HEV) by simultaneous optimization of the control strategy and the power train. The power transmission employed in this vehicle is a power-split continuously variable transmission (CVT) which uses several fixed ratio mechanisms. After describing this transmission, the rules of electric assist control strategy are introduced....
متن کامل